
作者:(美)刘兵著;俞勇等译
页数:434
出版社:清华大学出版社
出版日期:2012
ISBN:9787302298700
高清校对版pdf(带目录)
夸克网盘:https://pan.quark.cn/s/71709912dfbd
百度网盘:https://pan.baidu.com/s/1CcEEuRuRDdtnnjrAqmFm_g?pwd=2pz1
内容简介
在过去的20年里,Web的迅速发展使其成为世界上规模最大的公共数据源。Web挖掘的目标是从Web超链接、网页内容和使用日志中探寻有用的信息。依据在挖掘过程中使用的数据类别,Web挖掘任务可以被划分为3种主要类型:Web结构挖掘、Web内容挖掘和Web使用挖掘。Web结构挖掘从表征Web结构的超链接中寻找知识。Web内容挖掘从网页内容中抽取有用的信息和知识。而Web使用挖掘则从使用日志和其他形式的用户交互记录中挖掘用户的活动模式。从本书在2006年底的第1版发行之后,很多领域已经有了重大的进展。大部分的章节都已经添加了新的材料来反应这些进展。主要的改动在第11章和第12章中,这两章已经被重新撰写并做了重要的扩展。在撰写第1章的时候,观点挖掘(第11章)的研究仍处于初步阶段。从那以后,搜索社区对这个问题已经拥有了一个更好的理解并提出了许多新颖的技术来解决问题的各个方面。为了将Web使用挖掘(第12章)的最新进展包含进来,关于推荐系统、协同过滤、用户日志挖掘和计算广告学的话题已经被添加进来。新版比原来长了很多。 本书旨在讲述上述的互联网数据挖掘任务以及它们的核心挖掘算法;尽可能涵盖每个话题的广泛内容,给出足够多的细节,以便读者无须借助额外的阅读,即可获得相对完整的关于算法和技术的知识。其中第5章--监督学习的部分内容、结构化数据的抽取、信息整合、观点挖掘和Web使用挖掘--是本书的特色,这些内容在其他书籍中没有提及,但它们在Web数据挖掘中却占有非常重要的地位。当然,传统的Web挖掘主题,如搜索、页面爬取和资源探索以及链接分析在书中也做了详细描述。 本书尽管题为“Web数据挖掘”,但依然涵盖了数据挖掘和信息检索的核心主题;因为Web挖掘大量使用了它们的算法和技术。数据挖掘部分主要由关联规则和序列模式、监督学习(分类)、无监督学习(聚类)这三大重要的数据挖掘任务,和半监督学习这个相对深入的主题组成。而信息检索对于Web挖掘而言最重要的核心主题都有所阐述。因此,本书自然的分为两大部分,第1部分包括第2~5章,介绍数据挖掘的基础,第2部分包括第6~12章,介绍Web相关的挖掘任务。 有两大指导性原则贯穿本书始末。其一,本书的基础内容适合本科生阅读,但也包括足够多的深度资料,以满足打算在Web数据挖掘和相关领域研读博士学位的研究生。书中对读者的预备知识几乎没有作任何要求,任何对算法和概率知识稍有理解的人都应当能够顺利地读完本书。其二,本书从实践的角度来审视Web挖掘的技术。这一点非常重要,因为大多数Web挖掘任务都在现实世界中有所应用。
本书特色
《世界著名计算机教材精选:Web数据挖掘(第2版)》不仅可作为本科生的教科书,也是在Web数据挖掘和相关领域研读博士学位的研究生的重要参考用书,同时对Web挖掘研究人员和实践人员获取知识、信息、甚至是创新想法也很有帮助。
目录
第2部分 Web挖掘
节选
《世界著名计算机教材精选:Web数据挖掘(第2版)》不仅可作为本科生的教科书,也是在Web数据挖掘和相关领域研读博士学位的研究生的重要参考用书,同时对Web挖掘研究人员和实践人员获取知识、信息、甚至是创新想法也很有帮助。
非特殊说明,本博所有文章均为博主原创。
如若转载,请注明出处:https://www.xiazainiu.com/Wd1qk_5_65434.html